

Perfect 8	Square
Squaros	Roots
$1^2 = 1$	$\sqrt{1} = 1$
$2^2 = 4$	$\sqrt{4} = 2$
3 ² = 9	$\sqrt{9} = 3$
$4^2 = 16$	$\sqrt{16} = 4$
$5^2 = 25$	$\sqrt{25} = 5$
$6^2 = 36$	$\sqrt{36} = 6$
$7^2 = 49$	$\sqrt{49} = 7$
$8^2 = 64$	$\sqrt{64} = 8$
$9^2 = 81$	$\sqrt{81} = 9$
$10^2 = 100$	$\sqrt{100} = 10$
$11^2 = 121$	√121=11
$12^2 = 144$	$\sqrt{144} = 12$
$13^2 = 169$	√ <u>169</u> =13
$14^2 = 196$	-√ 196 = 14
$15^2 = 225$	$\sqrt{225} = 15$

Sometimes entire radicals can be changed to mixed radicals by simplifying.

Ex. 1 Change Entire Radicals to Mixed Radicals

A radical is in simplest form if:

- 1. The radical has no perfect square factors other than 1 in the radicand.
- 2. There are no fractions under a $\sqrt{.}$ $\sqrt{\frac{1}{6}}$
- 3. There are no $\sqrt{}$ in the denominator. $\frac{1}{\sqrt{2}}$

Multiplying and Dividing Radicals:

Ex. 2 Simplify. a) $\sqrt{5} \cdot \sqrt{7}$ $= \sqrt{5 \cdot 7}$ $= \sqrt{35}$	b) $3\sqrt{6} \cdot \sqrt{2}$ = $3\sqrt{12}$ = $3 \cdot \sqrt{4}\sqrt{3}$ = $3 \cdot 2\sqrt{3}$ = $6\sqrt{3}$	c) $(5\sqrt{6})(2\sqrt{8})$ = 10 $\sqrt{48}$ = 10 $\sqrt{16 \cdot 3}$ = 40 $\sqrt{3}$
d) $(2\sqrt{6})(3\sqrt{2})(5\sqrt{6})$ = 2.3.5.5.5.6.2.6 = 30.652 = 18052 = -		553 = 56
g) $\frac{15\sqrt{7}}{3\sqrt{4}}$ $= \frac{5\sqrt{7}}{1\cdot 2}$ $= \frac{5\sqrt{7}}{2}$ $^{3} \sqrt{27}$	h) $\frac{5\sqrt{12}}{\sqrt{8}} = \frac{5 \cdot \sqrt{2}}{\sqrt{4 \cdot 12}}$ $= \frac{10\sqrt{2}}{\sqrt{2}\sqrt{2}}$ $= \frac{5\sqrt{3}}{\sqrt{2}}$ $= \frac{5\sqrt{3}}{\sqrt{2}}$	the denominator by the radical in the denominator.

i)
$$\frac{12\sqrt{27}}{\frac{12}{\sqrt{45}}}$$

= $3\sqrt{9.3}$
 $\sqrt{9.5}$
= $3\sqrt{3}$. $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$. $\sqrt{5}$

Adding and Subtracting Radicals:

Algebra: Collect like terms. Like Terms Same variables, same exponents Example: $2\chi^2$, $5\chi^2$

Radicals: Collect like radicals. Like Radicals Same index, same radicand Example: $\sqrt{3}$, $2\sqrt{3}$

Counter-example: 3χ , 4χ >

Counter-example: 253, 552

Ex. 3 Are the following radicals like or unlike?

a) $2\sqrt{3}, -3\sqrt{3}, 4\sqrt{3}$ b) $\sqrt{4}, \sqrt{2}, \sqrt{3}$ c) $\sqrt{8}, \sqrt{2}, \sqrt{32}$ d) $\sqrt{3}, \sqrt{3}, \sqrt{$

LIKE

a) $\sqrt{27} + \sqrt{20} - \sqrt{12} + \sqrt{45}$ b) $7\sqrt{2} - 6\sqrt{63} - \sqrt{28} + 5\sqrt{18}$

Ex. 4 Add or Subtract.

 $= 3\sqrt{3} + 2\sqrt{5} - 2\sqrt{3} + 3\sqrt{5} = -7\sqrt{2} - 18\sqrt{7} - 2\sqrt{7} + 15\sqrt{2}$ = $\sqrt{3} + \sqrt{5}$ = -22\sqrt{7} - 2\sqrt{1}

Homework p. 39 # 1-3, 4bdf, 5bdf, 6bcde, &ad, 9acd, 11, 13, 14, 16c

