Lesson 1.5A Working With Radicals

 (radicand not a perfect square)
Properties of Radicals:

1) Multiplication

	$\sqrt{4 \cdot 25}$			
$=$	$\sqrt{4} \cdot \sqrt{25}$	In general:	$\sqrt{b} \cdot \sqrt{d}$	$a \sqrt{b} \cdot c \sqrt{d}$
$=$	10	$=$	$2 \cdot 5$	
$=10$	$=\sqrt{b d}$	$=a c \sqrt{b d}$		

$$
\begin{array}{l|lll}
\text { 2) Division } & \text { In general: } & \frac{\sqrt{b}}{\sqrt{d}} & \frac{a \sqrt{b}}{c \sqrt{d}} \\
\begin{array}{l|ll}
\sqrt{\frac{81}{9}} & \frac{\sqrt{81}}{\sqrt{9}} & =\sqrt{\frac{b}{d}} \\
=\sqrt{9} & =\frac{9}{3} & =\frac{a}{c} \sqrt{\frac{b}{d}} \\
=3 & =3 &
\end{array} &
\end{array}
$$

3) Squaring

In general:

$$
\begin{aligned}
& (\sqrt{b})^{2} \\
= & (a \sqrt{b})^{2} \\
= & =(a \sqrt{b})(a \sqrt{b}) \\
= & \sqrt{b} \cdot \sqrt{b} \\
= & a^{2}(\sqrt{b})^{2} \\
= & \sqrt{b \cdot b} \\
= & a^{2} b \\
= & \sqrt{b^{2}} \\
= &
\end{aligned}
$$

Radicals can be:
Entire
\sqrt{n}

Mixed
$a \sqrt{b}$

Sometimes entire radicals can be changed to mixed radicals by simplifying.
Ex. 1 Change Entire Radicals to Mixed Radicals
a) $\sqrt{27}$
b) $\sqrt{48}$
c) $\sqrt{500}$
d) $\sqrt{180}$
$=\sqrt{9 \cdot 3}=\sqrt{16 \cdot 3}$
$=\sqrt{100} \cdot \sqrt{5}$
$=\sqrt{36 \cdot 5}$
$=\sqrt{9} \sqrt{3}=\sqrt{16} \cdot \sqrt{3}$
$=10 \sqrt{5}$
$=6 \sqrt{5}$
$=3 \sqrt{3}=4 \sqrt{3}$

A radical is in simplest form if:

1. The radical has no perfect square factors other than 1 in the radicand.
2. There are no fractions under $a \sqrt{ } \cdot \sqrt{\frac{1}{6}}$
3. There are no $\sqrt{ }$ in the denominator. $\frac{1}{\sqrt{2}}$

Multiplying and Dividing Radicals:
Ex. 2 Simplify.
a) $\sqrt{5} \cdot \sqrt{7}$
b) $3 \sqrt{6} \cdot \sqrt{2}$
$=\sqrt{5 \cdot 7}$
$=3 \sqrt{12}$
c) $(5 \sqrt{6})(2 \sqrt{8})$
$=\sqrt{35}$
$=3 \cdot \sqrt{4} \sqrt{3}$
$=10 \sqrt{48}$
$=3 \cdot 2 \sqrt{3}$
$=10 \sqrt{16 \cdot 3}$
$=6 \sqrt{3}$

$$
=40 \sqrt{3}
$$

$$
\begin{aligned}
\text { d) } & (2 \sqrt{6})(3 \sqrt{2})(5 \sqrt{6}) \\
= & 2 \cdot 3 \cdot 5 \cdot \sqrt{6 \cdot 2 \cdot 6} \\
= & 30 \cdot 6 \sqrt{2} \\
= & 180 \sqrt{72} \\
& =\sqrt{36 \cdot 2} \\
& =6 \sqrt{2}
\end{aligned}
$$

e) $\sqrt{3}(\sqrt{6}+5)$
$=\sqrt{18}+5 \sqrt{3}$
$=30 \cdot 6 \sqrt{2} \sqrt{72} \quad=\sqrt{9 \cdot 2}+5 \sqrt{3}$
f) $\frac{\sqrt{18}}{\sqrt{3}}=\sqrt{\frac{18}{3}}$
$=3 \sqrt{2}+5 \sqrt{3}$
$=\sqrt{6}$

$$
\begin{aligned}
& \text { g) } \frac{15 \sqrt{7}}{3 \sqrt{4}} \\
& =\frac{5 \sqrt{7}}{1 \cdot 2} \\
& \text { h) } \frac{5 \sqrt{12}}{\sqrt{8}}=\frac{5 \cdot \sqrt{4 \cdot 3}}{\sqrt{4 \cdot 2}} \\
& =\frac{10 \sqrt{3}}{2 \sqrt{2}} \\
& =\frac{5 \sqrt{7}}{2} \\
& =\frac{5 \sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& \text { Rationalizing the Denominator } \\
& =\frac{5 \sqrt{6}}{2} \\
& \text { i) } \frac{3}{12 x} \sqrt{27} \\
& =\frac{3 \sqrt{9 \cdot 3}}{\sqrt{9 \cdot 5}} \\
& =\frac{3 \sqrt{3}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\
& =\frac{3 \sqrt{15}}{5}
\end{aligned}
$$

Adding and Subtracting Radicals:

Algebra: Collect like terms. Like Terms

Same variables, same exponents
Example: $2 x^{2}, 5 x^{2}$

Radicals: Collect like radicals.

Like Radicals

Same index, same radicand
Example: $\sqrt{3}, 2 \sqrt{3}$

Ex. 3 Are the following radicals like or unlike?
a) $2 \sqrt{3},-3 \sqrt{3}, 4 \sqrt{3}$
b) $\sqrt{4}, \sqrt{2}, \sqrt{3}$
c) $\sqrt{8}, \sqrt{2}, \sqrt{32}$
d) $\sqrt[3]{3}, \sqrt{3}, \sqrt[4]{3}$
LIKE
VNLIKE
$\begin{array}{lll}2 \sqrt{2} & \sqrt{2} & 4 \sqrt{2}\end{array}$

UNLIKE LIKE

Ex. 4 Add or Subtract.
a) $\sqrt{27}+\sqrt{20}-\sqrt{12}+\sqrt{45}$
b) $7 \sqrt{2}-6 \sqrt{63}-\sqrt{28}+5 \sqrt{18}$
$=3 \sqrt{3}+2 \sqrt{5}-2 \sqrt{3}+3 \sqrt{5}$
$=\sqrt{5}+15$
$=7 \sqrt{2}-18 \sqrt{7}-2 \sqrt{7}+15 \sqrt{2}$
$=\sqrt{3}+5 \sqrt{5}$
$=22 \sqrt{2}-20 \sqrt{7}$

Homework
 p. 39 特 1-3, 4bdf, 5bdf, 6bcde, 8ad, 9acd, 11, 13, 14, 16c

$$
\begin{aligned}
& \sqrt{x+y} \neq \sqrt{x}+\sqrt{y} \\
& \sqrt{x-y} \neq \sqrt{x}-\sqrt{y}
\end{aligned}
$$

