Lesson 1.4A: Completing the Square
~ Max or Min of a Quadratic Function
What do you remember about quadratics?

Standard Form
$f(x)=a x^{2}+b x+c$
y-int is "c"

Vertex Form
Factored Form
$f(x)=a(x-r)(x-s)$
x-int are " r " and " s "
"a" in all three forms is the same and indicates the direction of opening and the vertical stretch/compression

Completing the Square

Why do we need this process?
 form

What it is: $f(x)=a x^{2}+b x+c$

$$
f(x)=a(x-h)^{2}+k
$$

What it is not: FACTORING or SOLVING

RECALL: Completing the Square with Algetiles $f(x)=a(x-h)^{2}+k$

$$
\therefore \quad x^{2}+2 x-3=(x+1)^{2}-4
$$

You are forcing part of the trinomial to be a perfect square which can then be factored to a binomial squared.
$f(x)=a x^{2}+b x+c \quad$ complete the square $\quad \rightarrow \quad f(x)=a(x-h)^{2}+k$

- hard to graph expand and simplify - easy to graph
- vertex unknown
- vertex \& transformations known

What information can you read from vertex form? $f(x)=a(x-h)^{2}+k$

- direction of opening and stretch factor 'a'

- max/min value \& when it occurs

Ex. 1 Find the value of c that makes a perfect square trinomial.
a) $x^{2}+8 x+c \longleftrightarrow$
b) $x^{2}-10 x+c$
c) $x^{2}+3 x+c$
$\frac{8}{2}=44^{2}$
$c=16$
$\stackrel{L}{\longrightarrow}(-5)^{2}$
$c=25$

$=\frac{9}{4}$

Ex. 2 Change to vertex form by completing the square.
a) $f(x)=x^{2}-12 x+8$

Process

$$
\begin{aligned}
=\underbrace{x^{2}-12 x+36}-36+8 & \Rightarrow \begin{array}{l}
\text { Common factor the first two terms so the } \\
\text { coefficient of } x^{2} \text { is } 1 .
\end{array} \\
=(x-6)^{2}-36+8 & \Rightarrow \begin{array}{l}
\text { Add and subtract the number that will make } \\
\text { a perfect square trinomial. }
\end{array} \\
=(x-6)^{2}-28 & \Rightarrow \begin{array}{l}
\text { Remove the compensation term from the } \\
\text { brackets. }
\end{array} \\
& \Rightarrow \begin{array}{l}
\text { Factor the perfect square and collect the } \\
\text { remaining terms. }
\end{array}
\end{aligned}
$$

b) $f(x)=2 x^{2}-12 x+23$

$$
\begin{aligned}
& =2\left(x^{2}-6 x\right)+23 \\
& =2\left(x^{2}-6 x+9-9\right)+23 \\
& =2\left(x^{2}-6 x+9\right)-18+23 \\
& =2(x-3)^{2}+5
\end{aligned}
$$

Ex. 3 Determine the max/min value and when it occurs.
a)

$$
\begin{aligned}
f(x) & =-4 x^{2}-5 x-3 \\
& =-4\left(x^{2}+\frac{5}{4} x+\frac{25}{64}-\frac{25}{64}\right)-3 \\
& =-4\left(x^{2}+\frac{5}{4} x+\frac{25}{64}\right)+\frac{25}{16}-3 \\
& =-4\left(x+\frac{5}{8}\right)^{2}+\frac{25}{16}-\frac{48}{16} \\
& =-4\left(x+\frac{5}{8}\right)^{2}-\frac{23}{16}
\end{aligned}
$$

$$
\therefore \text { Max value }
$$

$$
\Delta P-\frac{23}{16}
$$

Occurs when
b) $f(x)=\frac{2}{3} x^{2}+7 x-\frac{1}{2}$ x is $-\frac{5}{8}$

$$
=\frac{2}{3}\left(x^{2}+\frac{21}{2} x+\frac{441}{16}-\frac{441}{16}\right)-\frac{1}{2}
$$

$$
7 \div \frac{2}{3}=7 \times \frac{3}{2}
$$

$$
\begin{aligned}
& =\frac{2}{3}\left(x^{2}+\frac{21}{2} x+\frac{441}{16}\right)- \\
& =\frac{2}{3}\left(x+\frac{21}{4}\right)^{2}-\frac{151}{8}
\end{aligned}
$$

\therefore Min value of $-\frac{151}{8}$
Occurs when $x=-\frac{21}{4}$

Ex. 4 A football player kicks a ball off a football tee. The height of the ball, h, in metres after t seconds, can be modelled using the formula: $h(t)=-5 t^{2}+20 t$. What is the maximum height of the ball?

$$
\begin{aligned}
h(t) & =-5\left(t^{2}-4 t+4-4\right) \\
& =-5\left(t^{2}-4 t+4\right)+20 \\
& =-5(t-2)^{2}+20
\end{aligned}
$$

$$
\therefore \text { Max height of the ball }
$$

$$
\text { is } 20 \mathrm{~m}
$$

Ex. 5 Rachel is selling scarves at a craft show. Each scarf costs $\$ 6$ to make.
She wants to sell, at $\$ 10$ per scarf, the same amount as last year, when they sold 40 scarves Fol every 50 cent increase inthe price, she expects to sell four fewer scarves. What selling price will maximize their profit and what will the profit be?

Understand the Problem
What was Rachel's profit last year?

```
Profit = (Selling Price - Cost)(Quantity Sold)
                =( )( )
    =( )( )
    = $
```

Profit wit increase in price $=($ Profit Price $)(\#$ Sold $)$
Let x represent \# of \$0.50 increases
"Profit price" is $\$ 4+0.5 x$

$$
\begin{aligned}
& \text { "\#sold" is 40-4x } \\
& \begin{aligned}
P & =(4+0.5 x)(40-4 x) \\
& =160-16 x+20 x-2 x^{2} \\
& =-2 x^{2}+4 x+160
\end{aligned}
\end{aligned}
$$

Need Max!

$$
\begin{aligned}
P & =-2\left(x^{2}-2 x+1-1\right)+160 \\
& =-2\left(x^{2}-2 x+1\right)+2+160 \\
& =-2(x-1)^{2}+162
\end{aligned}
$$

$$
\begin{aligned}
\text { Price } & =\$ 10+0.50(1) \\
& =10.50
\end{aligned}
$$

$$
\text { Vertex }(1,162)
$$

$$
\text { \# of price } \begin{gathered}
\text { increases }
\end{gathered}
$$

increases!
\therefore She should increase her price I time
New selling price ts 10.50
Max profit is $\$ 162$

