1.3 Factoring

To factor is to write an algebraic expression as a product of two or more other algebraic expressions .

Why factor? To arrive at equivalent expressions which are presented in simpler terms which allows us to: - Solve equations

- Graph relations

In grade 10 you learned how to: Common Factor

- Factor by Grouping
- Factor Simple Trinomials
- Factor Complex Trinomials
- Factor a Difference of Squares
- Factor a Perfect Square Trinomial

Common Factoring

(!) Always your first and last step.
WHEN?

HOW?

2 or more terms

- Take out the greatest common factor.
- Divide the expression by the GCF to find the other factor.
a) $2 m n-4 m n t$
$=2 m n(1-2 t)$
b) $6 t^{5}-9 t^{2}$
$=3 t^{2}\left(2 t^{3}-3\right)$
c) $3 x^{4}-6 x^{3}+9 x$
$=3 x\left(x^{3}-2 x^{2}+3\right)$
d) $4 x(a-b)-3(a-b)$
$=(a-b)(4 x-3)$

Factor by Grouping

An even \# of terms: 4, 6, 8, etc...
a) $3 x(m-5)+2(5-m)$
$=3 x(m-5)+2(-1)(-5+m)$
$=3 x(m-5)-2(m-5)$
$=(m-5)(3 x-2)$
b) $x(y-2)-4(2-y)$

$$
\begin{aligned}
& =x(y-2)+4(y-2) \\
& =(y-2)(x+4)
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
& 22 v x-6 v y+11 w x-3 w y \\
= & 22 v x+11 w x-6 v y-3 w y \\
= & 11 x(2 v+w)-3 y(2 v+w) \\
= & (2 v+w)(11 x-3 y)
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
& 16 x^{5}+8 x^{4} \\
& =8 x^{4}(2 x+1)-3 x^{2}(2 x+1)+2(2 x+1) \\
& =(2 x+1)\left(8 x^{4}-3 x^{2}-3 x^{2}+2\right)
\end{aligned}
$$

Simple Trinomials

4THEB
3 terms

$$
a x^{2}+b x+c \text { where } a=1
$$

a) $x^{2}-9 x+14$

M $14=(x-2)(x-7)$
A -9
$N-2,-7$
c) $a^{2}+8 a b+15 b^{2}$

M is $=(a+3 b)(a+5 b)$ A 8
N 3,5

$$
a^{2}+3 a b+5 a b+15 b^{2}
$$

$$
=a(a+3 b)+5 b(a+3 b)
$$

$$
=(a+3 b)(a+5 b)
$$

\& NOT NECESSARY $\#$
b) $5 x^{2}+15 x-140$
$=5\left(x^{2}+3 x-28\right)$
Tamb

$$
M-28
$$

$$
\text { A } 3
$$

$=5(x+7)(x-4)$

$$
N 7,-4
$$

d) $x^{4}+2 x^{2} b-24 b^{2}$

$$
\left.\left.\begin{array}{rl}
=\left(x^{2}-4 b\right)\left(x^{2}+6 b\right) & M
\end{array}\right)-24\right\}
$$

$$
\begin{aligned}
& M=a c \\
& \mathrm{~A}=\mathrm{b} \\
& \mathrm{~N}=\mathrm{n}_{1}, \mathrm{n}_{2} \\
& \left(x+n_{1}\right)\left(x+n_{2}\right)
\end{aligned}
$$

Difference of Squares

2 terms
2 perfect squares separated by a subtraction: $a^{2}-b^{2}$

$(a)^{2}$
c) $a^{2}-\frac{1}{9} \pi\left(\frac{1}{3}\right)^{2}$
$=\left(a+\frac{1}{3}\right)\left(a-\frac{1}{3}\right)$

Tam

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

conjugates
b) $3 x^{2}-12$

$$
\begin{aligned}
& =3\left(x^{2}-4\right) \\
& =3(x+2)(x-2)
\end{aligned}
$$

d) $81-m^{12}$

$$
\begin{aligned}
& \text { d) } 81-m^{12} \\
& =\left(9+m^{6}\right)\left(9-m^{6}\right) \\
& =\left(9+m^{6}\right)\left(3+m^{3}\right)\left(3-m^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { e) } & (3 x-2)^{2}-(5 x+1)^{2} \\
= & {[(3 x-2)-(5 x+1)][(3 x-2)+(5 x+1)] } \\
= & (3 x-2-5 x-1)(3 x-2+5 x+1) \\
= & (-2 x-3)(8 x-1)
\end{aligned}
$$

Complex Trinomials

HOW?

$$
\left(a_{1} x+f_{1}\right)\left(a_{2} x+f_{2}\right)
$$

$$
\begin{aligned}
& M=a c \\
& A=b \\
& N=n_{1}, n_{2}
\end{aligned}
$$

1. Use a, n_{1} and n_{2}
2. Reduce. to find the factors.

$$
\frac{a}{n_{1}}, \frac{a}{n_{2}} \quad \frac{a_{1}}{f_{1}}, \frac{a_{2}}{f_{2}}
$$

OR
Decompose the middle term using $\mathrm{n}_{1}, \mathrm{n}_{2}$ and factor by grouping.

$$
\begin{array}{rl}
\text { b) } 14 x^{2}+31 x y-10 y^{2} & M \\
=(7 x-2 y)(2 x+5 y) & A \\
& \text { A } \\
=(21 \\
& \\
& \frac{14}{-4}, \frac{14}{35} \\
& \frac{7}{-2}
\end{array}
$$

$$
\begin{array}{ll}
\text { c) } \begin{array}{ll}
18 a^{2} b+3 a b-6 b & \text { d) } 3 x^{4}-25 x^{2}-18 \\
=3 b\left(6 a^{2}+a-2\right) & =\left(x^{2}-9\right)\left(3 x^{2}+2\right) \\
M=3 b(3 a+2)(2 a-1) & =(x-3)(x+3)\left(3 x^{2}+2\right) \\
M-12-54 \\
A & \\
N \frac{6}{4},-3 & \\
\frac{3}{2} \frac{2}{-1} & \\
& \\
& \\
& \\
\hline-\frac{3}{-9}, \frac{3}{2}
\end{array}
\end{array}
$$

Perfect Square Trinomials

3 terms
$a x^{2}+b x+c$
where a \& c are perfect squares and

b is twice the product of their square roots.

Factoring Flowchart

$$
\begin{gathered}
\text { Check you answer by } \\
\text { EXPANDING }
\end{gathered}
$$

HOMEWORK Handout 1.3

