1.3 Factoring

To factor is to write an algebraic expression as a product of two or more other algebraic expressions.

Why factor? To arrive at equivalent expressions which are presented in

- simpler terms which allows us to: Solve equations

 - Graph relations

In grade 10 you learned how to: • Common Factor

- Factor by Grouping
- Factor Simple Trinomials
- Factor Complex Trinomials
- Factor a Difference of Squares
- Factor a Perfect Square Trinomial

Common Factoring

Always your first and last step.

2 or more terms

- Take out the greatest common factor.
- Divide the expression by the GCF to find the other factor.

a)
$$2mn - 4mnt$$

= $2mn(1-24)$

b)
$$6t^5 - 9t^2$$

= $3 + \frac{3}{2} (2 + \frac{3}{2} - 3)$

c)
$$3x^4 - 6x^3 + 9x$$

= $3 \times (2^3 - 2)^2 + 3$

d)
$$4x(a-b)-3(a-b)$$

$$= (2-b)(4x-3)$$

Factor by Grouping

An even # of terms: 4, 6, 8, etc...

- Group terms to form pairs.
- Factor the pairs by finding common factors.
- Factor out the shared common binomial factor.

a)
$$3x(m-5)+2(5-m)$$

= $3x(m-5)+2(-1)(-5+m)$
= $3x(m-5)-2(m-5)$
= $(m-5)(3x-2)$

The terms m - 5 and 5 - m are opposites. This means that one divided by the other is -1.

b)
$$x(y-2)-4(2-y)$$

= $x(y-2)+4(y-2)$
= $(y-2)(x+4)$

c)
$$mx + 2y + my + 2x$$

$$= mx + my + 2x + 2y$$

$$= m(x+y) + 2(x+y)$$

$$= (x+y)(m+2)$$

d)
$$22vx - 6vy + 11wx - 3wy$$

$$= 22vx + 11wx - 6vy - 3wy$$

$$= 11x(2v + w) - 3y(2v + w)$$

$$= (2v + w)(11x - 3y)$$

e)
$$y^{2}+1-y^{3}-y$$

= $|(y^{2}+1)-y(y^{2}+1)|$
= $(y^{2}+1)(1-y)$

f)
$$16x^{5} + 8x^{4} - 6x^{3} - 3x^{2} + 4x + 2$$

 $= 8x^{4}(2x+1) - 3x^{2}(2x+1) + 2(2x+1)$
 $= (2x+1)(8x^{4} - 3x^{2} + 2)$

Simple Trinomials

3 terms $ax^2 + bx + c$ where a = 1

a)
$$x^2 - 9x + 14$$

M 14 = $(x - 2)(x - 7)$
A -9
N -2 -7

c)
$$a^2 + 8ab + 15b^2$$

M 15 = $(a+3b)(a+5b)$
A 8
N 3,5
 $a^2 + 3ab + 5ab + 15b^2$
= $a(a+3b) + 5b(a+3b)$
= $(a+3b)(a+5b)$
A NOT NECESSARY A

$$(x + n_1)(x + n_2)$$
 $M = ac$
 $A = b$
 $N = n_1, n_2$

a)
$$x^2 - 9x + 14$$

M 14 = $(x - 2)(x - 7)$ = $5(x^2 + 3x - 28)$ A 3
A -9
N -2 = $5(x^2 + 3x - 28)$ P 7,-4

c)
$$a^2 + 8ab + 15b^2$$

M 15 = $(0+3b)(0+5b)$
R 8
N 35

Difference of Squares

2 terms

2 perfect squares separated by a subtraction: a^2-b^2

a)
$$49x^{2} - 16y^{2}$$

= $(7x + 4y)(7x - 4y)$
(a)²
c) $a^{2} - \frac{1}{9}x^{3}$
= $(a + \frac{1}{3})(a - \frac{1}{3})$

$$a^2$$
- b^2 = $(a - b)(a + b)$

conjugates

b)
$$3x^2 - 12$$

= $3(\chi^2 - 4)$
= $3(\chi + 2)(\chi - 2)$

d)
$$81 - m^{12}$$

= $(9 + m^6)(9 - m^6)$
= $(9 + m^6)(3 + m^3)(3 - m^3)$

e)
$$(3x-2)^{2} - (5x+1)^{2}$$

= $\begin{bmatrix} 3x-2 \\ -2x-1 \end{bmatrix} - (5x+1) \begin{bmatrix} 3x-2 \\ 3x-2 + 5x+1 \end{bmatrix}$
= $\begin{bmatrix} 3x-2-5x-1 \\ -2x-3 \end{bmatrix} = \begin{bmatrix} 3x-2+5x+1 \\ -2x-3 \end{bmatrix}$

Complex Trinomials

3 terms $ax^2 + bx + c$ where a = 1

a)
$$10x^{2} - 11x - 6$$

M - $(5x + 2)(2x - 3)$

A - (1)

N - $(5x + 2)(2x - 3)$
 $(2x - 3)$

$$M = ac$$

 $(a_1x + f_1)(a_2x + f_2)$ $A = b$
 $N = n_1, n_2$

1. Use a, n₁ and n₂ to find the factors.

$$\frac{a}{n_1}, \frac{a}{n_2}$$

 $\frac{a_1}{f_1}, \frac{a_2}{f_2}$

2. Reduce.

OR

Decompose the middle term using n₁, n₂ and factor by grouping.

b)
$$14x^{2} + 31xy - 10y^{2}$$

$$= (7x - 2y)(2x + 5y)$$

$$= \frac{14}{-4}, \frac{14}{35}$$

$$= \frac{2}{-2}, \frac{2}{5}$$

c)
$$18a^{2}b + 3ab - 6b$$

= $3b(6a^{2} + a - 2)$
M -12 = $3b(3a+2)(2a-1)$
N $\frac{6}{7} = \frac{6}{3}$
 $\frac{3}{3} = \frac{2}{7}$

c)
$$18a^{2}b + 3ab - 6b$$

= $3b(6a^{2} + a - 2)$
M = $3b(3a+2)(2a-1)$
N = $3b(3a+2)(2a-1)$
N = $3a+2$
N = $3a$

Perfect Square Trinomials

3 terms

$$ax^2 + bx + c$$

where a & c are perfect squares and b is twice the product of their square roots.

$$(\chi^{2})^{2}$$
 $(\chi^{4})^{2}$
d) $x^{4} - 8x^{2} + 16$
 $= (\chi^{2} - 4)^{2}$

$$(\sqrt{a}x \pm \sqrt{c})^2$$

same sign as b

Factoring Flowchart

HOMEWORK Handout 1.3

