Lesson 1.2: Functions and Function Notation

Standard Notation	vs.	Function Notation
$y=x+3$ Solve for y when $x=1$. $y=1+3$ $y=4$	$y \leftrightarrow f(x)$	$f(x)=x+3$ Find $f(1)$. $f(1)=1+3$ $f(1)=4$

Note: f is not a variable.
$f(x)$ does not mean f times x.
It means: What is the value of the function, f, when x equals a certain value?

Ex. For each function, determine the values indicated.

1. If $f(x)=3 x^{2}-2 x+1$, find $f(-1)$. 2. If $f(x)=-3 x+2$, find x if $f(x)=0$.
$f(-1)=3(-1)^{2}-2(-1)+1$
$0=-3 x+2$
$=3+2+1$
$=6$
$3 x=2$ $x=\frac{2}{3}$
2. If $f(x)=x^{2}-6 x$, find x if $f(x)=16$.

$$
16=x^{2}-6 x
$$

$$
0=x^{2}-6 x-16
$$

$$
M-16
$$

$$
=(x-8)(x+2)
$$

N $-8,2$
$x=8,-2$
4. If $f(x)=2 x^{2}-3 x$ and $g(x)=3 x-4$,
$\begin{array}{ll}\text { a) find } 3 g(2) & \text { b) } f(m+1)\end{array}$
$\begin{array}{rlrl}g(2) & =3(2)-4 & f(m+1)=2(m+1)^{2}-3(m+1) \\ & =2 & \end{array}$
$3 g(2)=3=2(m+1)(m+1)-3 m-3$
$\lg (2)=3 \cdot 2 \quad=2\left(m^{2}+2 m+1\right)-3 m-3$
$=6$
$=2 m^{2}+4 m+2-3 m-3$
$3 g(2)=3(3(2)-4)$
$=2 m^{2}+m-1$
${ }^{\text {" } f \text { c) } f(f(x))^{x}}$ " $f(x)=2 x^{2}-3 x$
$f(f(x))=2\left(2 x^{2}-3 x\right)-3\left(2 x^{2}-3 x\right)$
$=2\left(2 x^{2}-3 x\right)\left(2 x^{2}-3 x\right)-3\left(2 x^{2}-3 x\right)$
$=2\left(4 x^{4}-6 x^{3}-6 x^{3}+9 x^{2}\right)-3\left(2 x^{2}-3 x\right)$
$=2\left(4 x^{4}-12 x^{3}+9 x^{2}\right)-3\left(2 x^{2}-3 x\right)$
$=8 x^{4}-24 x^{3}+18 x^{2}-6 x^{2}+9 x$
$=8 x^{4}-24 x^{3}+12 x^{2}+9 x$
d) $g(f(x)) \quad f(x)=2 x^{2}-3 x$
$g(x)=3 x-4$
$g\left(2 x^{2}-3 x\right)=3\left(2 x^{2}-3 x\right)-4$
$=6 x^{2}-9 x-4$
$\begin{aligned} f(g(x)) & =2(3 x-4)^{2}-3(3 x-4) \quad g(f(x))=3\left(2 x^{2}-3 x\right)-4 \\ & =2\left(9 x^{2}-24 x+16\right)-3(3 x-4) \quad=6 x^{2}-9 x-4 \\ & =18 x^{2}-48 x+32-9 x+12\end{aligned}$
DIFFERENTI

This is read:
"f of x equals x-squared"
$f(x)=x^{2}$
fis not a variable.
This doesn't mean
f times x

