Unit 1: Functions

Root
$y=\sqrt{x}$

Cubic
$y=x^{3}$
$y=x^{3}$

Exponential
$y=2^{x}$

Reciprocal

$$
y=\frac{1}{x}
$$

Absolute Value

$$
y=|x|
$$

1.1 : Functions, Domain and Range

A. Relation vs. Function

Relation: An identified pattern between two variables
Can be represented as ordered pairs, table of values, graphs, equations ex. $\{(-3,4),(-2,1),(-2,7),(5,-3)\}$ Braces $\}$ are used to represent a set. A set is a collection of items.

Function: A special type of relation in which for every x-value, there is only one corresponding y-value.

* All functions are relations but not all relations are functions.

Ex. 1 Which of the following relations are also functions?

b)
c) $A=\{(3,4),(2,-1),(5,-1),(6,4)\}$
d) $B=\left\{\begin{array}{c}\{(2,2),(3,-4),(2,3),(4,-1)\} \\ N O\end{array}\right.$

f)

Fn
g)

How can we test if a relation is a function?
i)

j)

The Vertical Line Test
If a relation is graphed, it is a function if a vertical line crosses in no more than one place anywhere on the graph.
B. Domain and Range

Domain: The set of al input values (usually "x").
These are the values of x that can be used/make sense.
Range: The set of all output values (usually " y ").
These are the values of y that are possible given the input.
We use set notation to describe the domain and range.

$$
D=\{\quad\} \quad R=\{\quad\}
$$

Ex. 2. State the domain and range.
a) $\{(0)-3),(1)-4),(2)-3),(5),-1),(7)-4)\}$

b) | \mathbf{x} | \mathbf{y} |
| :---: | :---: |
| -3 | 0 |$\quad D=\{-3,-2,-1,0\}$

-2	1
-1	0
0	1

$R=\{-4,-3,-1\}$
c)
$D=\{x \in \mathbb{R}\}$
$R=\{y \in \mathbb{R}\}$
d) $\left.\begin{array}{ll}\prod^{y} & D=\{x \in \mathbb{R}\} \\ \underset{(0,-2)}{\longrightarrow}\end{array}\right) R=\{-2\}$

g) $y=5 x-2$
$D=\{x \in \mathbb{R}\}$
$R=\{y \in \mathbb{R}\}$
h) $y=-4(x-3)^{2}+2$
i) $x^{2}+y^{2}=49$

$$
\begin{aligned}
& \text { Ii } \quad \begin{array}{l}
\text { Quadratic } \\
\\
V \text { vertex }(3,2) \\
D=\{x \in \mathbb{R}\}
\end{array}, ~
\end{aligned}
$$

$\frac{1}{4}$

$$
R=\{y \in \mathbb{R} \mid y \leq 2\}
$$

$$
\begin{aligned}
& D=\{x \in \mathbb{R} \mid-7 \leq x \leq 7\} \\
& R=\{y \in \mathbb{R} \mid-7 \leq y \leq 7\}
\end{aligned}
$$

Picture of Function

