4.6 Mulitplying & Factoring Difference of Squares

A. Multiplying Two Binomials (DoS)

	7	3
X	y ²	32
-3	-32	-9

3.	(x-9)(x+9)	
(ok tte

4.	(2x+1)(2x-1)
	$=4x^{2}-1$

$$5. \quad (3x-5)(3x+5)$$

$$= 9x^2 - 25$$

$$3x -5$$
 $3y -5$
 $5y -15x -25$

9.
$$(2x^2 - 3y^4)(2x^2 + 3y^4)$$

= $4x^4 - 9x^3$

	2x2	-344
2~2	424	-6x2y4
3,4	6x2y4	-9y8

10.
$$(x^2 - 3y)(x^2 + 3y)$$

= $x^{4/} - 9y^2$

B. Factoring a Difference of Squares

two perfect square numbers with a difference between them

4.
$$9x^2 - 1$$
 (3x)² - (1) = (3x - 1)(3x + 1)

Remember to always look for a GCF!

$$|8x^{2}-50|$$

$$= 2(9x^{2}-25)$$

$$= 2(3x-5)(3x+5)$$