4.6 Mulitplying \& Factoring Difference of Squares

A. Multiplying Two Binomials (DoS)

1. $(x+3)(x-3)$
$=x^{2}-9$

2. $(x-9)(x+9)$
3. $(2 x+1)(2 x-1)$

$$
=4 x^{2}-1
$$

5. $(3 x-5)(3 x+5)$
$=9 x^{2}-25$

	$3 x$	-5
$3-$	$9 x^{2}$	$-15 x$
5	$15 x$	-25

9. $\left(2 x^{2}-3 y^{4}\right)\left(2 x^{2}+3 y^{4}\right)$

$$
=4 x^{4}-9 y^{8}
$$

8. $(5 x-4 y)(5 x+4 y)$

10. $\left(x^{2}-3 y\right)\left(x^{2}+3 y\right)$
$=x^{4}-9 y^{2}$

B. Factoring a Difference of Squares

two perfect square numbers with a difference between them

3. $\begin{gathered} \\ 25 x^{2}-81 \\ (5 x)^{2}-(9)^{2} \\ = \\ (5 x-9)(5 x+9)\end{gathered}$

4. $\begin{gathered}9 x^{2}-1 \\ (3 x)^{2}-(1)^{2}\end{gathered}$ $=(3 x-1)(3 x+1)$

6. $4 x^{2}-81 y^{2}$

$$
=(2 x+9 y)(2 x-9 y)
$$

7. $49 x^{2} y^{2}-100 z^{2}$
8. $36 x^{4}-121 y^{2} z^{2}$
$=\left(6 x^{2}+11 y z\right)\left(6 x^{2}-11 y z\right)$

Remember to always look for a GCF!

$$
\begin{aligned}
& 18 x^{2}-50 \\
= & 2\left(9 x^{2}-25\right) \\
= & 2(3 x-5)(3 x+5)
\end{aligned}
$$

