4.9 More Factoring - Putting it All Together

Factoring Decision Tree

Ex. 1 Factor, if possible.

a)
$$x^2 - 2x - 15$$

= $(x+3)(x-5)$

	×	3
1	1 ²	37
-5	-52	-15

c)
$$15x^2 + 27x - 6$$

= $3(5x^2 + 9x - 2)$
= $3(5x - 1)(x + 2)$

	γ	2	M	-10
5χ	522	10x	A	9
-1	- X	-2	\sim	10, -1

e)
$$3x^2 + 7x - 12$$

		M
3×2		A
	-12	N

b)	$16x^2 - 49y^2z^4$	
	$=(4x-7y3^2)(4x+7y3^2)$)

_	<i>3</i> _x	- 74
3×	9x2	-21xy
-7 _y	-21xy	49y ²

M	44
A	- 42
\sim	-21,-21

f)
$$3x^2 - 18x + 24$$

= $3(x^2 - 6x + 8)$
= $3(x - 4)(x - 2)$

Ex. 2 Factor, if possible.

a)
$$8x^2 + 10xy - 3y^2$$

= $(4x - y)(2x + 3y)$

	4,	- y	M -24
Zχ	8 v 2	-2xy	A 10
3y	12 xy	-3y2	N 12, -Z

c)
$$6x^3+6x^2-8x-8$$

= $2(3x^3+3x^2-4x-4)$
= $2[3x^2(x+1)-4(x+1)]$
= $2[(x+1)(3x^2-4)]$
= $2(x+1)(3x^2-4)$
= $2(3x^2-4)(x+1)$

\uparrow	×	I
3~	3×3	3x2
- 4	- 4 ₂	- 4

e)
$$x^2 + 7x - 10$$

$$\chi^2$$
 A \sim

b)
$$20x^{2}+100xy+125y^{2}$$

$$= 5(4x^{2}+20xy+25y^{2})$$

$$= 5(2x+5y)^{2}$$

$$= 5(2x+5y)^{2}$$

$$+ 25y^{2}$$

d)
$$(x+2)^2-9$$

 $=(x+2+3)(x-1)$
 $=(x+5)(x-1)$
 x^2-9
 $=(x+3)(x-3)$

f) $121w^2 - 144$ = $(11\omega - 12) \times 11\omega + 12$

Ex. 3 Factor, if possible.

a)
$$3k^2+12k-36$$

= $3(k^2+4k-12)$
= $3(k+6)(k-2)$

D) 411111+3111+1211+9	
= (4n+3)(m+3))

c)
$$16h^2 - 16h + 4$$

= $4(4h^2 - 4h + 1)$
= $4(2h - 1)(2h - 1)^2$

$$2h$$
 -1
 $2h$ $4h^2$ -2h A -4
-1 -2h 1 N -2 -2

e)
$$w^4 - 16$$

= $(\omega^2 - 4)(\omega^2 + 4)$
= $(\omega - 2)(\omega + 2)(\omega^2 + 4)$

	_

	4 n	3
m	4mn	3m
3	12n	9

d)
$$2x^2 - 7xy - 6y^2$$

f)
$$12x^2 - 15x + 3$$

= $3(4x^2 - 5x + 1)$
= $3(x - 1)(4x - 1)$

Ex. 4 The area of a rectangular swimming pool is represented by $A = 10x^2 + 11x - 6$.

a) Determine an expression for the length and width of the pool.

$$A = (2x+3)(5x-2)$$

$$L = 2x+3$$

$$W = 5x-2$$
ORDER MATTER

b) Determine the length and width of the pool if x=5m.

c) Determine the area of the pool if x=5m.

Area if
$$x=5$$

Long way $A = 10(5)^2 + 11(5) - 6$
 CR
 $A = L \cdot W$
 $= 13 \cdot 23$
 $= 299 \, \text{m}^2$
 $\therefore Area is 299 \, \text{m}^2$