STATION A

1. Label each of the triangles with hypotenuse, opposite and adjacent for the indicated angle.

2. a) Determine the value of sin 44°.

b) Determine the angle if $\cos C = 0.5983$.

STATION A

1. Label each of the triangles with hypotenuse, opposite and adjacent for the indicated angle.

2. a) Determine the value of sin 44°.

b) Determine the angle if $\cos C = 0.5983$.

$$C = \cos^{-1}(0.5983)$$

 $C = 53$
 0.553

STATION B

- 1) The following is a diagram of the Ottawa river. Since it is not possible to measure the distance across the river directly, indirect measurement must be used, as shown.
- a) Prove that the two triangles are similar.

b) Using similar triangles, compute the distance across the river.

STATION B

- The following is a diagram of the Ottawa river.
 Since it is not possible to measure the distance across the river directly, indirect measurement must be used, as shown.
- a) Prove that the two triangles are similar.

b) Using similar triangles, compute the distance across the river.

$$\frac{7}{26} = \frac{740}{37}$$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 26$
 $= 20$

.! The river is 520m o

STATION C

Given that the two triangles below are similar, find the value of x as indicated on the diagram.

STATION C

Given that the two triangles below are similar, find the value of x as indicated on the diagram.

$$\frac{6}{x+6} = \frac{16}{15}$$

$$10(x+6) = 6(15)$$

$$10x + 60 = 90$$

$$10x = 90 - 60$$

$$10x = 30$$

$$x = 3$$

$$(X = 3 \text{ units})$$

STATION D

1. Solve for the unknown as indicated in the triangle below.

3. In $\triangle ABC$, $C=90^\circ$, $B=62^\circ$ and c=11 m. Find the length of side a. Include a labeled diagram with your solution.

STATION D

1. Solve for the unknown as indicated in the triangle below.

$$tan \Theta = \frac{14}{9}$$

 $\Theta = tan^{-1}(\frac{14}{9})$
 $\Theta = 57.3$

3. In $\triangle ABC$, $C=90^\circ$, $B=62^\circ$ and c=11 m. Find the length of side a. Include a labeled diagram with your solution.

$$\cos 62 = \frac{9}{11}$$
 $11\cos 62 = 9$
 $5.2 = 9$

STATION E

1) Find the measure of angle θ using the cosine law.

2) Find the measure of side *a* using the sine law.

STATION E

1) Find the measure of angle θ using the cosine law.

2) Find the measure of side *a* using the sine law.

$$\frac{\alpha}{\sin 117} = \frac{3}{\sin 23}$$

$$\alpha = \frac{3}{\sin 23}$$

$$\alpha = \frac{3 \sin 117}{\sin 23}$$

$$\alpha = \frac{6.8}{\sin 23}$$

STATION F

The angle of depression from the top of a tower to the top of a 16 m building is 48°. The tower and building are 30 m apart. How high is the tower? Include a labeled diagram with your solution.

STATION F

The angle of depression from the top of a tower to the top of a 16 m building is 48°. The tower and building are 30 m apart. How high is the tower? Include a labeled diagram with your solution.

$$tan 48 = \frac{y}{30}$$
 $30tan 48 = y$
 $33.3 = y$

$$h = y + 16$$

 $h = 33.3 + 16$
 $h = 49.3$

... The tower is 49.3 m high

STATION G

A chandelier is suspended from the ceiling by two chains. One chain is 46 cm long and forms an angle of 60° with the ceiling. The other chain is 64 cm long. What angle does the longer chain make with the ceiling? Label the diagram provided as part of your solution.

STATION G

A chandelier is suspended from the ceiling by two chains. One chain is 46 cm long and forms an angle of 60° with the ceiling. The other chain is 64 cm long. What angle does the longer chain make with the ceiling? Label the diagram provided as part of your solution.

$$\frac{\sin 0}{46} = \frac{\sin 60}{64}$$
 $\sin 0 = \frac{46 \sin 60}{64}$
 $0 = \sin \left[\frac{46 \sin 60}{64}\right]$
 $0 = 38.5$

i'. The longer chain makes an angle of 38.5° with the ceiling.

STATION H

Two tracking stations are on opposite sides of a rocket that has been shot into the air. The tracking stations are 20 km apart. From station A, the angle of elevation of the rocket is 41°; from station B, the angle of elevation of the rocket is 75°. What is the altitude of the rocket? Include a labeled diagram with your solution.

STATION H

Two tracking stations are on opposite sides of a rocket that has been shot into the air. The tracking stations are 20 km apart. From station A, the angle of elevation of the rocket is 41°; from station B, the angle of elevation of the rocket is 75°. What is the altitude of the rocket? Include a labeled diagram with your solution.

$$A \leftarrow 20 \, \text{km} \rightarrow B$$

$$\Theta = 180 - 41 - 75$$
 $\Theta = 64$

$$\frac{b}{\sin 75} = \frac{20}{\sin 75}$$

$$b = \frac{20 \sin 75}{\sin 64}$$

$$b = 21.49$$

$$\frac{21.49}{51041} = \frac{h}{21.49}$$

$$21.49 \sin 41 = h$$

$$14.1 = h$$

$$\frac{a}{\sin 41} = \frac{20}{\sin 64}$$

$$a = \frac{20\sin 41}{\sin 64}$$

$$a' = 14.599$$

$$Sin7S = \frac{h}{14.599}$$
 $14.599sin7f = h$
 $14.1 = h$

: . The rocket is 14.1 km high.