1.5 Solving Problems with Primary Trig Ratios

1) Solve for $\angle A$ using two different ratios.

Any rotiol.
sin

$$
\begin{aligned}
\sin \theta & =\frac{\text { of p }}{n y p} \\
\sin A & =\frac{3}{5} \\
A & =\sin ^{-1}\left(\frac{3}{5}\right) \\
A & =36.9^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\cos }{\cos \theta} & =\frac{a d y}{h y r} \\
\cos A & =\frac{4}{5} \\
A & =\cos ^{-1}\left(\frac{4}{5}\right) \\
& =36.9^{\circ}
\end{aligned}
$$

b)

Let's find that unknown

$$
\begin{aligned}
b^{2} & =6^{2}+4^{2} \\
& =36+16 \\
& =52 \\
b & =\sqrt{52} \\
& =7.2
\end{aligned}
$$

fan
sin

$$
\begin{aligned}
\frac{n}{\sin \theta} & =\frac{\text { opp }}{n y p} \\
\sin A & =\frac{6}{7.2} \\
A & =\sin ^{-1}\left(\frac{6}{7.2}\right) \\
& =56^{\circ}
\end{aligned}
$$

To "Solve" a triangle means to determine all side lengths and all angle measures that aren't given in the question.

Tools I could use:

sum of angles in a triangle is 180 degrees
trigonometric ratios (angles \& sides)
pythagorean theorem (sides)

2) Solve the following triangles. Include a labelled diagram as part of your solution.
a) In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{c}=5 \mathrm{~cm}$ and $\mathrm{a}=11 \mathrm{~cm}$.

$$
\left.\begin{array}{rl}
b^{2} & =5^{2}+11^{2} \\
& =25+121 \\
& =146 \\
b & =12.1
\end{array}\right\} \begin{array}{r}
\tan \theta=\frac{0 p p}{a-1 j} \\
\tan c=\frac{5}{11} \\
c=24.4^{\circ}
\end{array} \quad \begin{aligned}
A & =180-90-24.4 \\
& =65.6^{\circ}
\end{aligned}
$$

b) $\operatorname{In} \triangle \mathrm{DEF}, \angle \mathrm{F}=90^{\circ}, \angle \mathrm{E}=23^{\circ}$ and $\mathrm{f}=82 \mathrm{~m}$.

side d
$\frac{\text { Side } e}{\sin \theta=\frac{o p p}{h y p}}$

$$
82^{2}=32^{2}+d^{2}
$$

$$
82^{2}-32^{2}=d^{2}
$$

$$
\sin 23^{\circ}=\frac{e}{82}
$$

$$
5700=d^{2}
$$

$$
d=75.5
$$

$$
\begin{aligned}
<82 \cdot \sin 23^{\circ} & =e \\
c & =32
\end{aligned}
$$

A searchlight is mounted at the front of a search and rescue helicopter. The pilot is flying the helicopter 150 m above the ground and the beam hits the ground at 70° from the horizontal. The beam spreads out at an angle of 5°. How wide is the beam when it hits the ground?

x

$$
\begin{aligned}
& \tan \theta=\frac{o p p}{\sigma^{d j}} \\
& \tan 20^{\circ}=\frac{x_{1}}{150}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\frac{x_{2}}{\tan \theta}=\frac{\text { opp }}{\operatorname{adj}} & \frac{x}{x} & =x_{2}-x_{1} \\
& =69.9-54.6 \\
\tan 25^{\circ}=\frac{x_{2}}{150} & & =15.3
\end{array}
$$

$150-\tan 20^{\circ}=x_{1}$
$x_{1}=54.6$

$$
150 \cdot \tan 25^{\circ}=x_{2}
$$

$$
x_{2} \doteq 69.9
$$

$$
\therefore \text { The width of the beam is } 15.3 \mathrm{~m}
$$

A student is standing at the top of a hill that is 200 m high. Using a clinometer, she sights the base of the hill at an angle of depression of 40° from the horizontal. If the slope of the hill is constant, how far will the walk be from the top of the hill to the base? Draw a diagram!

$$
\sin \theta=\frac{o p f}{h y p}
$$

$$
\sin 40^{\circ}=\frac{200}{x}
$$

$$
x \cdot \sin 40^{\circ}=200
$$

$$
x=\frac{200}{\sin 40^{\circ}}
$$

$$
\doteq 311.1
$$

Her walk is approx. 311 m

From the bridge of a boat on the Niagara River, the angle of elevation of the top of the Horseshoe Falls is 64°. The angle of depression of the bottom of the Falls is 6^{0}. If the bridge of the boat is 2.8 m above the water, calculate the height of the Horseshoe Falls, to the nearest tenth of a metre.

$\tan 6^{\circ}=\frac{2.8}{e}$

$$
e=\frac{2.8}{\tan 6^{\circ}}
$$

$\div 26.6$

$$
\tan \theta=\frac{o p \Gamma}{a d j}
$$

$$
\tan 64^{\circ}=\frac{x}{26.6}
$$

$$
\begin{aligned}
26.6\left(\tan 64^{\circ}\right) & =x \\
x & \doteq 55
\end{aligned}
$$

$$
\begin{aligned}
h & =55+2.8 \\
& =57.8
\end{aligned}
$$

The Light of the falls is approx. 57.8 m

