1.3 Primary Trig Ratios

Trigonometric ratios are based on sides, relative to a given angle.

<u>hypotenuse</u>: the side across from the right angle. <u>opposite</u>: the side *across* from a given angle θ . <u>adjacent</u>: the side that is *beside* a given angle θ .

Let's Explore...

- 1) Draw a RIGHT triangle with an angle of 25°.
- 2) Using the 25° as your reference angle (θ), label the sides opposite, adjacent, hypotenuse.
- 3) Measure the side lengths, and label these on the triangle.
- 4) Complete the following table. Compare with some classmates. What do you notice?

Trig Ratio	Ratios using measured sides	As a decimal	
	from your triangle		
0			is it close
_			to 0.4?
Н			10 0.7.
Α			is it close to
			0.9?
H			0.9:
0			
			is it close to
Α			0.5?

5) Draw a RIGHT triangle with an angle of 30°. Repeat #1-4 above. Make sure you compare with classmates, and discuss what you notice.

Try it with a few triangles that are 25° to compare with your first results

https://www.geogebra.org/m/N5K7XhXb In_right angle triangles, there are 3 primary trig ratios.

The Sine Ratio

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

The Cosine Ratio

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

The Tangent Ratio

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

 $\theta \rightarrow$ The Greek letter "theta" - represents an ANGLE

https://www.geogebra.org/m/N5K7XhXb

- * If we know the side lengths of a triangle, we can find the angles.
- * If we know the angles of a triangle, we can find the side lengths.

Solving for an Unknown Angle

Ex. 1 Determine the angle measure, to the nearest degree, for the following trig ratios. Make sure your calculator is in degree mode!

a)
$$\sin \theta = 0.5432$$
 $() = 32.9^{\circ}$

b)
$$tan A = \frac{3}{4}$$

b)
$$\tan A = \frac{3}{4}$$
 c) $\cos \theta = \frac{8}{9}$

- ** Since you are finding an angle, you need to work backwards. This means using the 2nd button on your calculator.
- Solve for the unknown angle. <u>Ex. 2</u>

gle.

$$CAH$$
 $COSO = COJ$
 NyP
 $COSO = 9.4$
 13.2
 $COSO = 0.71212...$
 $O = 44.6^{\circ}$

Try some: Solve for the unknown angle.

- Label the sides

 > opposite/adjacent/hypotenuse
 Choose the Trig Ratio

 > SOH CAH TOA
 Set up the Ratio
 Solve for the angle
 > Dont forget: 2nd Function!!

a)

f)

g)

h)

j)

32

HOMEWORK

Set 1: p. 362 #1ab,4eh,5d,

p. 372 #1a,2a,6ac,7ac,8a,9a

Set 2: p. 362 #1b,4eh,5d,15

p. 372 # 1a,2a,6ac,7ac,8a,9a,25