1.3 Primary Trig Ratios

Trigonometric ratios are based on sides, relative to a given angle.
hypotenuse: the side across from the right angle. opposite: the side across from a given angle θ. adjacent: the side that is beside a given angle θ.

Let's Explore...

1) Draw a RIGHT triangle with an angle of 25°.
2) Using the 25° as your reference angle (θ), label the sides opposite, adjacent, hypotenuse.
3) Measure the side lengths, and label these on the triangle.
4) Complete the following table. Compare with some classmates. What do you notice?

Trig Ratio	Ratios using measured sides from your triangle	As a decimal
$\frac{\mathrm{O}}{\mathrm{H}}$	-	
$\frac{\mathrm{A}}{\mathrm{H}}$	-	
$\frac{\mathrm{O}}{\mathrm{A}}$	-	

is it close
to 0.4 ?
is it close to 0.9 ?
is it close to 0.5 ?
5) Draw a RIGHT triangle with an angle of 30°. Repeat \#1-4 above.

Make sure you compare with classmates, and discuss what you notice.
https://www.geogebra.org/m/N5K7XhXb
In right angle triangles, there are 3 primary trig ratios.

The Sine Ratio

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}
$$

The Cosine Ratio

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

The Tangent Ratio

$$
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

$\theta \rightarrow$ The Greek letter "theta" - represents an ANGLE
https://www.geogebra.org/m/N5K7XhXb

* If we know the side lengths of a triangle, we can find the angles.
* If we know the angles of a triangle, we can find the side lengths.

Solving for an Unknown Angle

Ex. 1 Determine the angle measure, to the nearest degree, for the following trig ratios. Make sure your calculator is in degree mode!
a) $\sin \theta=0.5432$
$\theta=32.9^{\circ}$
b) $\tan \mathrm{A}=\frac{3}{4}$
c) $\cos \theta=\frac{8}{9}$

$$
A=36.9^{\circ}
$$

** Since you are finding an angle, you need to work backwards. This means using the 2 nd button on your calculator.

Ex. 2 Solve for the unknown angle.

$C_{\text {AH }}$

$$
\begin{aligned}
& \cos \theta=\frac{\operatorname{adj}}{\text { hyp }} \\
& \cos \theta=\frac{9.4}{13.2}
\end{aligned}
$$

$\cos \theta=0.71212 \ldots$
$\theta \doteq 44.6^{\circ}$

Try some: Solve for the unknown angle.

- Label the sides
$>$ opposite/adjacent/hypotenuse
- Choose the Trig Ratio
$>$ SOH CAH TOA
- Set up the Ratio
- Solve for the angle
$>$ Dont forget: 2nd Function!!
a)

d)

b)

e)

g)

h)

c)

f)

i)

I)

d)

g)

h)

$$
\begin{aligned}
& \sin \theta=\frac{0}{H} \\
& \sin \theta=\frac{27}{33}
\end{aligned}
$$

$$
\theta=\sin ^{-1}(27 \div 33)
$$

$$
\theta=55^{\circ}
$$

$$
\begin{aligned}
& \text { k) } \\
&\div 32) \\
& \tan x=\frac{0}{A} \\
& \tan x=\frac{6}{10} \\
& x=\tan ^{-1}(6 \div 10) \\
& x=31^{\circ}
\end{aligned}
$$

c)

f)

I)

$\cos \theta=\frac{A}{H}$
$\cos \theta=\frac{14}{27}$
$\theta=275^{-1}(14 \div 27)$
$\theta=59^{\circ}$

HOMEWORK

Set 1: p. 362 \#1ab,4eh,5d,
p. 372 \#1a,2a,6ac,7ac,8a,9a

Set 2: p. 362 \#1b,4eh,5d,15
p. 372 \# 1a,2a,6ac,7ac,8a,9a,25

