How can we solve this?


We need something new!

### 1.7 The Cosine Law

We need a new formula!

$$
\begin{gathered}
\text { Cosine Law: } \ln \triangle \mathrm{ABC} \\
\mathbf{a}^{\mathbf{2}}=\mathbf{b}^{\mathbf{2}}+\mathbf{c}^{\mathbf{2}} \mathbf{- 2} \mathbf{b c} \cos \mathbf{A} \\
* * \text { use to find a side length** } \\
\text { when given } 2 \text { sides and a } \\
\text { contained angle }
\end{gathered}
$$



Write the Cosine Law in terms of side $b$.

$$
b^{2}=a^{2}+c^{2}-2 a c \cos B
$$

Write the Cosine Law in terms of side c.
Can you see the pattern?

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

$$
b^{2}=a^{2}+c^{2}-2 a c \cos B
$$

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

## It looks like Pythagorean Formula

$$
c^{2}=a^{2}+b^{2} \quad-2 a b \cos C
$$

${ }^{\wedge}$ with a bit extra

1) Determine the unknown variable using the cosine law.


$$
\begin{aligned}
x^{2} & =4^{2}+9^{2}-4(9) \cos 110^{\circ} \\
x^{2} & =1093 \\
x & =10.5
\end{aligned}
$$



$$
\begin{aligned}
\frac{\sin \alpha}{4} & =\frac{\sin 110^{\circ}}{10.5} \\
\sin \alpha & =4 \cdot \frac{\sin 110^{\circ}}{10 \cdot 5} \\
\sin \alpha & =0.3579 \\
\alpha & =21^{\circ}
\end{aligned}
$$

3) Given $\triangle A B C$, where $A=48^{\circ}, b=17 \mathrm{~cm}$ and $c=25 \mathrm{~cm}$, solve the triangle.
4) Find the width of the lake, to the nearest metre, given the following:


$$
\begin{aligned}
& \omega^{2}=12^{2}+10^{2}-2(12)(10) \cos 30^{\circ} \\
& \omega^{2} \doteq 36.15 \quad \therefore \text { The lake is approx. } \\
& \omega=6 \quad 6 \mathrm{~km} \text { wide }
\end{aligned}
$$

## Practice

Set 1: p. 409 \#C1,C2,1a,3a,4b, 7, 9

Set 2: p. 409 \#C1,C2,3,4b, 8, 11, 15


