1.7 More Transformations

More Graphing: (by counting stretch from vertex)
Ex 2 Sketch $F(x)=-2(x-1)^{2}+6$

$$
V(1,6)
$$

Ex 3: Sketch $F(x)=1 x^{2}$ $V(0,0)$

State an Equation given the Graph: Aiming for this
Easiest to state the equation in $f(x)=a(x-h)^{2}+k$ form if you can see the vertex.

1. Find the vertex (h, k)
2. Find "a" - decide if pos or neg from direction of opening then count the stretch.
State an equation for each of the following:

Ex 1:
Vertex $(2,-3)$
Normal Pattern is
 $\therefore a=1$

$$
f(x)=(x-2)^{2}-3
$$

Ex 2: $\operatorname{Vertex}(-1,4)$
$\begin{array}{ll}\text { Since pattern is } & \xrightarrow{1} \sqrt{ }-2 \\ \therefore a=-2\end{array}$

$$
f(x)=-2(x+1)^{2}+4
$$

Can't count the stretch....What do I do???
Find an equation of the parabola that has a vertex of $(3,-2)$ and has an x intercept of $5 \rightarrow$ a point $(5,0)$

Aiming for $f(x)=a(x-h)^{2}+k$

$$
\begin{array}{rlrl}
\text { Vertex }(3,-2) & y & =a(x-3)^{2}-2 \\
\text { Point }(5,0) & 0 & =a(5-3)^{2}-2 \\
x y & 0 & =a(2)^{2}-2 \\
0 & =4 a-2 \\
2 & =4 a \\
\frac{1}{2} & =a \\
\therefore E q n: F(x)=\frac{1}{2}(x-3)^{2}-2
\end{array}
$$

Features of Quadratics

 called its zeros or roots.

- The vertical intercept (the y intercept) is the value of y when $x=0$ ie. $f(0)$

The Number of zeros: ${ }^{\circ}$
State the Number of zeroes:
a) From the graph:

vertex above or below axis: BELOW \# of zeros: 2 2

Direction of opening:
 vertex above or below axis: $A B O U E$ \# of zeros: 2

Direction

vertex above or below axis: $\partial N-4 \times 1 S$ \# of zeros: \qquad

Direction of opening: Down vertex above or below axis: $O N-A \times 15$ \# of zeros: \qquad

Direction
of opening: $\cup P$ vertex above or below axis: ABOVE
\# of zeros: \qquad

Direction of opening: DOWN vertex above or below axis: BELOW \# of zeros: \qquad

Max/Min and the Number of zeros:
From the Equation:

$$
y=3(x+7)^{2}-5
$$

Direction of opening:

vertex above or below axis: : below two
\# of zeros:
$x \times m i n$

occurs when:
$y=-(x+2)^{2}$
Direction of opening:
 vertex above or below axis: on \# of zeros: one

occurs when:---- $x=-2$

$$
y=2(x-4)^{2}+8
$$

Direction of opening: LP vertex above or below axis: above \# of zeros: none $\frac{8}{\text { Max mini: }}$ occurs when:----x=4 work break
p47 \# 1 State the number of zeros given the graph \# 2 State the number of zeros,max/min and when it occurs given the equation
We will take this up as a class in 10 min

Stating the vertical intercept Mint sub in $x=0$

$$
\begin{aligned}
f(x) & =3(x-2)^{2}-\frac{2}{2} \\
f(0) & =3(0-2)^{2}-5 \\
& =3(-2)^{2}-5 \\
& =3(4)-5 \\
& =12-5 \\
& =7
\end{aligned}
$$

Stating the Zeros
From a graph:

$$
x=-3 \quad d r x=1
$$

From an equation in VERTEX form: $\stackrel{.6}{\leftarrow}$ sub in $f(x)=0$

$$
\begin{aligned}
& f(x)=3(x-2)^{2}-5 \\
& 0=3(x-2)^{2}-5 \\
& 5=3(x-2)^{2} \\
& \frac{5}{3}=(x-2)^{2} \\
& \pm \sqrt{\frac{5}{3}}=x-2 \\
& 2 \pm \sqrt{\frac{5}{3}}=x
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
f(x)=-4(x+3)^{2}-8 \\
0=-4(x+3)^{2}-8 \\
8=-4(x+3)^{2} \\
-2=(x+3)^{2} \\
\pm \sqrt{-2}=x+3 \\
\text { T cant } \sqrt{n e g} \\
\text { value } \\
\text { no real routs } \\
\text { look first opens * } \\
\text { down vertex } \\
\text { belowtheaxis }
\end{array}\right.}
\end{gathered}
$$

Hmwk p 56 \# 3-5,7 p 204 \# 5 (using algebra),8 ab, 9ab

