Exponents Practice Test

1. Use exponent rules to simplify, then evaluate. You MUST show your work. Express answers with fractions when necessary and with positive exponents only.
a) $\frac{2^{5} 2^{-3}}{2^{-2}}=$
b) $\left(\frac{1}{2}\right)^{3}=$
c) $\left(-3^{2}\right)^{3}=$
d) $5^{6} \div 5^{4}=$
e) $3^{5} \times 3^{4}=$
f) $\left(\frac{2}{3}\right)^{-3}\left(\frac{2}{3}\right)^{-2}=$
g) $\left(3^{-1}\right)^{2}(3)^{7}$
h) $\frac{(-4)^{3} \times(-4)^{4}}{(-4)^{7}}$
i) $(-3)^{4}=$
j) $-2^{4}=$
k) $\frac{m^{2}\left(m^{-8}\right)^{3}}{(m)^{3}}$
l) $\left(\frac{p^{3} v^{5}}{s^{2}}\right)^{-3}$
2. Given the equation $y=1823(1.47)^{x}$, create a word problem that would produce the given equation.
3. Given the equation $y=189(3)^{x}$
a) What does the number 189 represent?
b) What does the number 3 represent?
c) Evaluate this equation for $x=5$. Write the answer here:
4. Given the following $(2 x)^{5}$, identify
5. Which graph matches the given equations?

the base:
the exponent:
6. Graph $y=4^{x}$ and $y=\left(\frac{1}{3}\right)^{x}$.

7. The number of motor vehicles in the world, M million, can be modelled by the equation $M=45(1.075)^{t}$, where t is the number of years since 1946.
a. How many cars were there initially, in millions?
b. What is the rate of growth of the number of motor vehicles in the world?
c. Based on this model, how many cars are there in the world this year?
8. The value of a boat, V, in thousands, can be modelled by the equation $V=38500(0.91)^{t}$, where t is the number of years since the boat was purchased.
a) How much money did the boat cost?
b) What is the depreciation rate each year of the value of the boat?
c) Based on this model, how much is the boat worth 10 years after the boat was purchased?
9. Write the equations that represent the following. DO NOT SOLVE.
a. If a certain substance has a half-life of 10 days, and there were initially 800 grams of the substance, how much of the substance is remaining after " x " days?
b. A bouncy ball loses 30% of its height when dropped. If the ball is dropped from a height of 10 m . What height will the ball bounce back up to after " n " bounces?
10. Given each of the following, describe how to determine whether or not a relation is exponential.
a) a table of values
b) a graph
c) an equation
11. Consider the following data:
a) Does this represent an exponential relationship?
b) What is the growth/decay rate?
c) What is the initial value?
d) Determine the equation that represents this data.

Year	0	1	2	3	4
\# of Rabbits	60	78	101	131	171

