Name: 55/6

**Preparation Checklist:** 

| I missed classes this unit: Many □          | Some □ |        | Few 🗆  | None □ |
|---------------------------------------------|--------|--------|--------|--------|
| I did my homework regularly: No 🗆           | Some □ |        | Most □ | All 🗆  |
| I studied hours for this <b>Test.</b>       |        |        |        |        |
| I took advantage of extra help offered:     | No □   | Some □ |        | Yes □  |
| I have my calculator/pencils/materials      | No □   | Yes □  |        |        |
| My Goal for this task is to achieve a Level |        | _      |        |        |

| Specific Curriculum Expectations                                                 | Content | Communication Level | Overall<br>Level |
|----------------------------------------------------------------------------------|---------|---------------------|------------------|
| GT2: Solve problems involving trigonometry in acute triangles using the sine law |         |                     |                  |
| and the cosine law, including problems arising from real-world applications.     | 32      |                     |                  |

Formulas:

SOH CAH TOA

$$a^2 + b^2 = c^2$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Sine Law: 
$$\frac{a}{\sin A} = \frac{b}{\sin R} = \frac{c}{\sin R}$$

$$c^2 = a^2 + b^2 - 2(a)(b)\cos C$$

\* Round all angles to the nearest degree and all lengths to the nearest tenth\* \*Make a drawing of the triangles when one isn't provided\*

PART A:

1. Given  $\triangle ABC$  for each...

[6 marks]



$$\angle A = 27^{\circ}$$
, c = 19 m  $\rightarrow$  find a





(b) 
$$\angle B = 74^{\circ}, c = 95 cm \Rightarrow$$

(b) 
$$\angle B = 74^{\circ}, c = 95 \text{ cm} \rightarrow \text{find a}$$
  
 $\cos C = \frac{2}{5}$   
 $\cos 74^{\circ} = \frac{2}{95}$ 



(c)

$$\tan 35^{\circ} = \frac{52}{5}$$

 $\angle A = 35^{\circ}$ ,  $a = 52 m \rightarrow \text{ find b}$ 

$$tan 35^{\circ} = \frac{52}{52}$$
 $b = \frac{52}{tan 35^{\circ}}$ 
 $b = 74.3cm$ 



3. In  $\triangle ABC$   $\angle A = 33^{\circ}$ ,  $\angle C = 77^{\circ}$ , a = 84cm. Find the length of side c. Draw it first! [4 marks]



## **PART B: Application**

4. In  $\triangle ABC$  if  $\angle A = 67^{\circ}$ , b = 21cm, c = 38cm. Find the length of a then find  $\angle B$ . Draw it first! [4 marks]



$$cosF = \frac{e^{2} + d^{2} - f^{2}}{2ed}$$

$$cosF = \frac{13 \cdot 8^{2} + 12 \cdot 6^{2} - 23 \cdot 5^{2}}{2(13.8)(12.6)}$$

$$cosF = \frac{-203.05}{347.76}$$

$$F = cos^{-1} \left( \frac{-203.05}{347.76} \right)$$

$$F = \frac{126^{\circ}}{347.76}$$

## PART C:

6. Determine the values of x and y. Drawing is not to scale. [6 marks]







$$y^2 = 4.2^2 + 10.2^2 - 2(4.2)(10.2) \cos 31^\circ$$
  
 $y^2 = 48.24$   
 $y = 6.9 \text{ cm}$ 

- 7. The foot of a flag pole is 14.5 m from where Silvia stands. Silvia is anchoring a 25m rope into the ground where she stands which runs straight to the top of the flag pole to help support it.
  - a) **Draw the diagram**, **label** it and **determine the angle of elevation** to the top of the flag pole. [4 marks]



$$\cos \phi = \frac{\alpha}{h}$$

$$\cos \phi = \frac{14.5}{25}$$

$$\phi = \cos^{-1}\left(\frac{14.5}{25}\right)$$

$$\phi = 55^{\circ}$$

b) How tall is the flag pole? [2 marks]

$$\begin{array}{c} P_{y} \int_{hagorus} \\ b^{2} = a^{2} + C^{2} \\ c^{2} = b^{2} - a^{2} \\ c^{2} = 95^{2} - 14.5^{\circ} \\ c^{2} = 414.75 \\ c = 20.4 \end{array}$$