1.5 Sine Law

For oblique triangles (non-right angles)

find a side
find an angle

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$$
\begin{aligned}
& \frac{\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}}{\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}} \\
& \frac{b}{\sin B}=\frac{a}{\sin A} \\
& \frac{b}{\sin 48^{\circ}}=\frac{36}{\sin 70^{\circ}} \\
& b= \\
& \\
& =\sin 48 \cdot \frac{36}{\sin 70^{\circ}} \\
& =28.47 \\
&
\end{aligned}
$$

Ex. 2 - Find angle Q

$$
\begin{aligned}
& \frac{\sin Q}{q}=\frac{\sin P}{p} \\
& \frac{\sin Q}{4.3}=\frac{\sin 56^{\circ}}{3.6}
\end{aligned}
$$

$$
\sin Q=4.3 \cdot \frac{\sin 56^{\circ}}{3.6}
$$

$$
\sin Q=0.9902
$$

$$
Q=\sin ^{-1}(0.9902)
$$

$$
=82^{\circ}
$$

Ex. 3 - Solve the triangle.
side p

$$
\begin{aligned}
\frac{P}{\sin 80^{\circ}} & =\frac{15}{\sin 60^{\circ}} \\
p & =\sin 80^{\circ} \cdot \frac{15}{\sin 60^{\circ}}
\end{aligned}
$$

$$
\frac{\operatorname{side} R}{\frac{r}{\sin R}=\frac{q}{\sin Q}}
$$

$$
\frac{r}{\sin 40^{\circ}}=\frac{15}{\sin 60^{\circ}}
$$

$$
r=\sin 40^{\circ} \cdot \frac{15}{\sin 60^{\circ}}
$$

$$
\doteq 11.1 \mathrm{~cm}
$$

Ex 4: Find angle P

$$
\begin{aligned}
\frac{\sin R}{r} & =\frac{\sin Q}{q} \\
\frac{\sin R}{35} & =\frac{\sin 60^{\circ}}{50} \\
\sin R & =35 \cdot \frac{\sin 60^{\circ}}{50} \\
\sin R & =0.6062 \\
R & =37^{\circ}
\end{aligned}
$$

HINT!

R

Practice
 p. 31 H1b, 2b, 36, 4b, 8,10

