1.1 Primary Trig Ratios (Soh Cah Toa)

1. Label this triangle as D, E, F.

Note that the vertices are labeled with CAPITALS and the corresponding sides are lower case.
2. Label each side accordingly for angle E
3. State the primary trig ratios for angle \mathcal{B}

SOH CAH TOA

$$
\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \tan \theta=\frac{\text { opp }}{\text { adj }}
$$

Ex. 1: Write the primary trig ratios for angle J and for angle K . ** you are just setting up the ratio here NOT solving anything**

$\sin K=\frac{4}{5}$
$\cos \mathrm{K}=\frac{3}{5}$
$\tan K=\frac{4}{3}$
$\sin J=\frac{3}{5}$
$\cos J=\frac{4}{5}$
$\tan J=\frac{3}{4}$
Why don't we do angle L?
-90°

- No opposite/adjacent

Ex. 2: Evaluate using your calculator. Round your answer to 4 decimal places.
a) $\sin 18^{\circ}=0.3090$
b) $\tan 45^{\circ}=1$

Notes:

* Your calculator gives you the ratio as a decimal instead of a fraction
* Make sure your calculator is set to degrees

What does this answer tell us?

Ex. 3: Find the measure of the angle. Round your answer to the nearest tenth of a degree (1 decimal place).
a) $\cos \mathrm{A}=0.9063$
b) $\sin Q=\frac{8}{9}$
$A=\cos ^{-1}(0.9063)$
$\doteq 25^{\circ}$

$$
\begin{aligned}
Q & =\sin ^{-1}\left(\frac{8}{9}\right) \\
& =62.7^{\circ}
\end{aligned}
$$

Ex. 4: Find the length of the indicated side. Round to 2 decimal places.

Which ratio uses

opp of adj?

$$
\tan \theta=\frac{o p p}{a d j}
$$

$$
\tan 40^{\circ}=\frac{18}{q}
$$

$$
q=\frac{18}{\tan 40^{\circ}}
$$

b) Find side d

$$
q=\frac{18}{0.8390}
$$

$$
\div 21.45
$$

$$
\therefore q=21.45 \mathrm{~cm}
$$

$\sin \theta=\frac{o p p}{h y p}$
$\sin 56^{\circ}=\frac{d}{21}$
$21\left(\sin 56^{\circ}\right)=d$
$d=17.41$
$\therefore d=17.41 \mathrm{~cm}$

Ex. 5: Find the measure of the indicated angle. Round to the nearest tenth of a degree.

$$
\begin{aligned}
& \text { a) Find angle } M \\
& \cos \theta=\frac{a d j}{h y p} \\
& \operatorname{adj} j_{j}^{5} \\
& \cos M=\frac{5}{9} \\
& M=\cos ^{-1}\left(\frac{5}{9}\right) \\
& M=56.3^{\circ}
\end{aligned}
$$

b) Find angle T

$$
\tan \theta=\frac{0 \rho p}{a d_{j}}
$$

$$
\tan \theta=\frac{11}{9}
$$

$$
\theta=\tan ^{-1}\left(\frac{11}{9}\right)
$$

$$
\therefore 50.7^{\circ}
$$

Ex.6: Solve the following triangle.

$$
\begin{aligned}
\theta & =180-35-90 \\
& =55^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta=\frac{o p p}{h y p} \\
& \sin 55^{\circ}=\frac{c}{20}
\end{aligned}
$$

$$
20^{2}=t^{2}+16.4^{2}
$$

$$
\left.\begin{array}{l}
\left.5^{\circ}\right)=c \\
c \doteq 16.4
\end{array}\right\}
$$

$$
20\left(\sin 55^{\circ}\right)=c
$$

$$
t^{2}=20^{\circ}-16.4^{2}
$$

$$
t=\sqrt{131.04}
$$

$$
=11.4
$$

Practice:

pg. 13 41-3, 6-3a, 9-12

