7.5a Modelling with Functions

All of the functions that you've studied in this course can be used to model real-life data....a function model will describe the data (not perfectly) and help to make predictions.

remember: linear, quadratic, cubic, quartic, exponential, logarithmic, rational, root, absolute value, trigonometric, inverses......and combinations!!!!!

PART A: Modelling by Hand

Ex: #1

A pond study in the back 40 has revealed that the population of a water bug that was initially 30 has grown to 240 in 5 days. If the maximum capacity of the pond is 1000 of these bugs, how long will it take to reach the maximum?

if take to reach the maximum?

a) use a linear model (y=mx+b)

b) use an exponential model (y=cor)

$$1 = \frac{2x - y_1}{3x - y_2} = \frac{1}{30}$$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{3x - y_2}{3x - y_2} = \frac{1}{30}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2} = \frac{1}{3x - y_2}$
 $1 = \frac{1}{3x - y_2$

Jan 10-8:49 PM

Graphs from Ex. #1:

Discuss: Which is a better model????

Modelling Using Graphing Technology

Ex: 2 The table below shows the amount of water vapour (mL of water/ m^3 of air) in the air as a function of temperature (${}^{\circ}C$).

Temp	Vapour
0	4.8
5	6.8
10	9.4
15	12.8
20	17.3
25	23.1
30	30.4
35	39.6

- a) Create a scatter plot of the data.
- b) Use regression to find the value of R^2 for each model:

linear:
$$R^2 = 0.9422$$

quadratic: $R^2 = 0.999$

cubic: $R^2 = 1$

exponential: $R^2 = 0.9982$

cubic:
$$R^2 = 1$$

other???

R²: this value is the fraction of variance in y that is explained by the model based on x. In general, values closer to 1.0 (ie. 100%) are better fits.....though this is NOT always the case. The model must also MAKE SENSE with the given data. Homework page 569 #1,2,4,5,12... pencil & paper

#7,8,11, **need graphing technology