5.3 Evaluating Logarithms
recall:

$$
\text { a) } \begin{aligned}
2^{3} & =8 \\
\log _{2} 8 & =3
\end{aligned}
$$

Ex 1 Evaluate the following:
a) $\log _{3} 27$

$$
\begin{aligned}
& =\log _{3} 3^{3} \\
& =3
\end{aligned}
$$

b) $\log _{4}\left(\frac{1}{64}\right)$
$=\log _{4}\left(\frac{1}{4}\right)^{3}$
$=\log _{4} 4^{-3}$

$$
=-3
$$

b) $\left(\frac{1}{2}\right)^{-4}=16$

$$
\log _{\frac{1}{2}} 16=-4
$$

c) $\log _{2}(-4)$
d) $\log _{3}(\sqrt[3]{9)}$
$=\log _{3}(9)^{\frac{1}{3}}$
$=\log _{3}\left(3^{2}\right)^{\frac{1}{3}}$
$=\log _{3} 3^{\frac{2}{3}}$
$=\frac{2}{3}$

Ex 2 Determine the approximate value of the following

$$
\begin{aligned}
& \log _{3} 16 \\
& =\log _{3} 3^{?} \rightarrow \text { between } 2+3 \\
& \doteq \log _{3} 3^{2.5} \\
& =2.5 \rightarrow \text { Appoxionate! }
\end{aligned}
$$

Consider the following

$$
\begin{aligned}
& \log _{5} 1=x \\
& 5^{x}=1 \\
& \log _{6} 6^{x}=y \\
& 6^{y}=6^{x} \\
& 6^{\log _{6} x}=y \\
& a^{x}=y \Leftrightarrow \log _{a} y=x \\
& s^{x}=5^{0} \\
& \therefore x=0 \\
& \therefore y=x \\
& \log _{6} y=\log _{6} x \\
& \text { General Rules: } \\
& \therefore y=x \\
& 1 \\
& a^{\log _{a} x}=x
\end{aligned}
$$

Ex 3 Evaluate the following.
a) $\log _{5} 125-\log _{5} 25$

$$
\begin{aligned}
& =\log _{5} 5^{3}-\log _{5} 5^{2} \\
& =3-2 \\
& =1
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \log _{7} \sqrt{7} \\
& =\log _{7} 7^{\frac{1}{2}} \\
& =\frac{1}{2} \\
\text { c) } & \log _{9} 3 \\
& =\log _{9} \sqrt{9} \\
& =\frac{1}{2}
\end{aligned}
$$

d) $\log _{2} 16-\log _{2} 32$

$$
\begin{aligned}
& =\log _{2} 2^{4}-\log _{2} 2^{5} \\
& =4-5 \\
& =-1
\end{aligned}
$$

b) $\log 1$

$$
=0
$$

$$
\left\{\begin{array}{l}
=\log _{10} 10^{\circ} \\
=0
\end{array}\right.
$$

Homework 5.3:
p. 466 \# 1-12, 17-22

$$
\begin{gathered}
466 \neq 1-6 \text { ace }, \\
9-11,17
\end{gathered}
$$

