5.1 Exploring Logarithmic Functions

The inverse of the exponential function $y=a^{\times}$can be written:
T in exponential form as $x=a^{y}$
is in logarithmic form as $y=\log _{a} x$

Consider the following exponential functions and their inverses:

Gizmos Demo

Note the similarities and differences between the exponential and the logarithmic functions:

	Exponential $y=a^{x}$	Logarithmic $y=\log _{\mathrm{a}} \mathrm{x}$
$\mathrm{a}>1$	increasing	increasing $x \rightarrow \infty, y \rightarrow \infty$
$0<\mathrm{a}<1$	decreasing	decreasing
asymptote	HA @ $\mathbf{y}=0$	VA @ $\mathrm{x}=0$
intercept	y -int @ 1	x -int @1
Domain	$x \in \mathbb{R}$	$x \in \mathbb{R}, x>0$
Range	$y \in \mathbb{R}, y>0$	$y \in \mathbb{R}$

Ex 1 For each of the following:
a) determine the equation of the inverse
b) graph the inverse
i) $f(x)=3^{x}$

ii) $f(x)=\left(\frac{1}{4}\right)^{x}$

x	y
-2	$\frac{1}{9}$
-1	$\frac{1}{3}$
0	1
1	3
2	9

$y=\log _{3} x$

Ex 2 Convert the following to exponential or logarithmic form.

$$
y=a^{x} \Longleftrightarrow x=\log _{a} y \quad 9=3^{2} \Longleftrightarrow 2=\log _{3} a
$$

a) $y=\log _{7} x$
b) $4^{x}=y$
c) $\log _{3} 81=4$

$$
7^{y}=x \quad x=\log _{4} y \quad 3^{4}=81
$$

Ex 3 Evaluate the following.

$$
\left.\begin{aligned}
& \log _{3} 81 \\
& 3^{x}=81 \\
& 3^{x}=3^{4} \\
& \therefore x=4
\end{aligned}\right|^{P R} \ell
$$

a)
c) $\log _{4} x=2$

$$
\begin{aligned}
& 4^{2}=x \\
& 16=x
\end{aligned}
$$

b) $\quad \log _{5} \sqrt{25}$

$$
\begin{aligned}
& S^{x}=\sqrt{25} \\
& S^{x}=5^{\prime} \\
& \therefore x=1
\end{aligned}
$$

d)

$$
\begin{gathered}
x=\log _{4}\left(\frac{1}{46}\right) \\
4^{2}=\frac{1}{16} \\
4^{x}=4^{-2} \\
\therefore x=-2
\end{gathered}
$$

Homework 5.1:

p. 451 \# 1,2,4,7-10

