3.4 Stretches of Periodic Functions

When sketching sine and cosine functions, remember the 5 key points: Maximum, Minimum, and zeroes. These 5 points are equally spaced along the x-axis, so they divide the period into quarters.
to find the scale: period divided by 4
A) Vertical Stretches or Compressions

$$
\text { Given } y=a f(x)
$$

is called the amplitude

When,
$|a|>1$ Vertical stretch by factor of a
Looks like compression 1111
$0<|a|<1$
$a<0$ (i.e. a is negative) Reflection about x-axis

Therefore, $y=a \sin x$ and $y=a \cos x$ results in Vertical Stretch
where "a "is called the amplitude

Ex 1: Sketch and describe the transformations with respect to $y=\sin x$ for a, b and $y=\cos x$ for c, d for one cycle
a) $y=2 \sin x$ Vertical stretch by a factor of 2
b) $y=1 / 2 \sin x$
c) $y=3 \cos x$

d) $y=1 / 3 \cos x$

Does the amplitude change?

Does the period change? No
B) Horizontal Stretches or Compressions

Given $y=f(k x)$
When,

Remember, k is INSIDE the function-and behaves OPPOSITE from what you would expect.

$k<0$ (ie. k is negative) Reflection about y-axis
(:) Because you are stretching/compressing horizontally, the period would change.

$$
\hat{k} \text { period }=\frac{2 \pi}{k}
$$

Did the amplitude change? $\frac{\text { NO }}{\text { YES! }}$
Did the period change?

$$
\begin{aligned}
\text { per } & =\frac{2 \pi}{K} \quad|a|=\frac{\text { max-min }}{2} \\
K & =\frac{2 \pi}{\operatorname{Per}}
\end{aligned}
$$

Question\#7

Homework:

Handout 3.4

