2.3 The Product Rule!

Ex. 1 Find the derivative of $h(x)=\left(x^{2}+1\right)\left(x^{3}-2\right)$

$$
\begin{aligned}
& h(x)=x^{5}-2 x^{2}+x^{3}-2 \\
& h^{\prime}(x)=5 x^{4}-4 x+3 x^{2}
\end{aligned}
$$

The Product Rule:
If $p(x)=f(x) g(x)$. then $p^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
Leibniz:
If u and v are functions of $x, \frac{d}{d x}(u v)=\frac{d u}{d x} v+u \frac{d v}{d x}$

Ex. 1 (redo) using the Product Rule.

$$
\begin{aligned}
& \frac{\text { Proof of Product Rule }}{F(x)=f(x) g(x)} \\
& \begin{aligned}
F^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h} g(x+h)+f(x) \frac{g(x+h)-g(x)}{h}\right] \\
= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \lim _{h \rightarrow 0} g(x+h)+\lim _{h \rightarrow 0} f(x) \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
= & f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
\end{aligned}
$$

```
Ex. 3 Differentiate \(f(x)=\sqrt{x}(2-3 x)\) and simplify
        \(=x^{\frac{1}{2}}(2-3 x)\)
\(f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}(2-3 x)+x^{\frac{1}{2}}(-3)\)
    \(=x^{-\frac{1}{2}}-\frac{3}{2} x^{\frac{1}{2}}-3 x^{\frac{1}{2}}\)
    \(=x^{-\frac{1}{2}}-\frac{9}{2} x^{\frac{1}{2}}\)
    \(=\frac{1}{x^{\frac{1}{2}}}-\frac{9}{2} x^{\frac{1}{2}}\)
```

Feb 9-8:25 PM

Ex. 4 Find the slope of the tangent to the graph of the function $f(x)=\left(3 x^{2}+2\right)\left(2 x^{3}-1\right)$ at the point $(1,5)$

```
```

$f^{\prime}(x)=6 x\left(2 x^{3}-1\right)+6 x^{2}\left(3 x^{2}+2\right)$

```
```

$f^{\prime}(x)=6 x\left(2 x^{3}-1\right)+6 x^{2}\left(3 x^{2}+2\right)$
$=12 x^{4}-6 x+18 x^{4}+12 x^{2}$
$=12 x^{4}-6 x+18 x^{4}+12 x^{2}$
$=30 x^{4}+12 x^{2}-6 x$
$=30 x^{4}+12 x^{2}-6 x$
Sub in $x=1$
Sub in $x=1$
$f^{\prime}(1)=30+12-6$
$f^{\prime}(1)=30+12-6$
$=36$
$=36$
$m_{\tan }=36$
$m_{\tan }=36$
(1) Find derivative
(1) Find derivative
(2) Plogin $x=1$
(2) Plogin $x=1$
for $m_{\text {tan }}$

```
                for \(m_{\text {tan }}\)
```

$$
m_{\tan }=36
$$

```

Extended Product Rule for a product of three functions

NOTE: If \(p(x)=f(x) g(x) h(x)\) then \(p^{\prime}(x)=f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)\)


Feb 9-8:31 PM```

